

African Journal of Public Administration and Environmental Studies (AJOPAES)

ISSN 2753-3174 (Print) ISSN 2753-3182 (Online)

indexed by IBSS, EBSCO and SABINET. It is accredited by DHET (the South African regulator of Higher Education)

Volume 4, Number 4, December 2025

Pp 21-37

Assessing the Relationship Between Climate Change Impacts and Community Awareness in Ondo State, Nigeria

DOI: <https://doi.org/10.31920/2753-3182/2025/v4n4a2>

Sultan Khan

Professor of Sociology; University of KwaZulu-Natal.

Durban, South Africa.

Email: khans@ukzn.ac.za

Daramola Iyanunioluwa Oluwatobi

Department of Political Science; University of KwaZulu-Natal.

Durban, South Africa.

Email: daramolat17@gmail.com

Abstract

This study examines the impacts of climate change and the level of community awareness in Ondo State, Nigeria, using a mixed-methods approach that integrates both quantitative and qualitative techniques. It investigates environmental, social, and economic challenges, such as extreme weather events, shifting agricultural patterns, and coastal hazards. A stratified random sampling method was employed to survey 400 respondents from diverse socioeconomic and geographic backgrounds across the state. Data on perceptions of rainfall variability, flooding, temperature fluctuations, and biodiversity loss revealed varying levels of awareness and scepticism regarding observable climate changes. These perceptions have direct implications for critical sectors, particularly agriculture and fisheries, which are central to the state's economy and highly sensitive to climate variability. Limited awareness among residents reduces community preparedness and weakens adaptive

capacity, thereby heightening the socio-economic vulnerability of rural livelihoods. Drawing on socio-ecological theory, the study emphasizes the interconnectedness of environmental and social systems in shaping adaptive responses. The findings highlight the urgent need for localized research, climate education, and stronger partnerships between government and communities to enhance resilience and promote sustainable development in Ondo State.

Keywords: *Climate Change, Awareness, Environmental Impact, Socio-Ecological Theory, Agriculture, Ondo State, Nigeria*

1.0 Introduction

In recent years, scientists have primarily investigated climate change by simulating global average surface temperature records from approximately 1860 to the present (e.g., Hansen et al., 1981; IPCC, 2001a). These simulations help assess climate forcing, sensitivity, and global heat storage, offering valuable, though still imperfect, insights. Another approach involves comparing climate simulations from different models, which has revealed both significant similarities and important differences among them (Gates et al., 1998; Covey et al., 2003). Climate change is one of the most complex and debated issues in meteorology. There is no specific number of dry years needed for "climate change" to be applicable, and even basic concepts like "climate," "climate change," "climatic trend," and "climatic fluctuation" are understood differently by various climatologists (Todorov, 1986, p. 259). Despite these disagreements, it's crucial to define and clarify terms like "climate" and "climate change" to better understand what influences our planet's changing climate. This starts with a key question: Why is Earth's temperature what it is? Researchers have been exploring this since the 19th century. Their studies show that the Sun is a major factor in heating and cooling Earth by emitting radiation into space (Dessler & Parson, 2019). Earth's temperature depends on a balance between the solar radiation it absorbs and the heat it emits back into space. Not all sunlight reaches the surface; approximately 30% is reflected into space, which makes Earth appear bright from afar. The remaining 70% is absorbed, warming the surface and lower atmosphere. To keep Earth's temperature stable, the energy coming in and going out must stay in balance (Dessler & Parson, 2019).

Climate change presents a major challenge for both national and international leaders, pushing them to make tough decisions amid

competing priorities and interests. Countries are dedicating significant resources to address impacts that are already beginning but will fully manifest in the coming decades. These choices are made with considerable uncertainty about the exact scope and timing of the damage. Importantly, the harmful effects of climate change are not the same everywhere; nations like Nigeria, which have contributed little to the historical buildup of greenhouse gases (GHGs), face a disproportionate burden (World Meteorological Organization [WMO], 2024).

In Nigeria, climate change manifests through increased frequency and intensity of extreme weather events, such as floods and droughts, leading to substantial economic and social impacts. For instance, the 2022 floods affected over 3.2 million people, destroyed more than 200,000 homes, and led to significant agricultural losses. Similarly, the 2023 floods impacted over 33,000 individuals, with economic damages estimated at \$9 billion (Akbarzai et al. 2022; BBC News, 2022; Maclean, 2022; Matthew Ogune, 2022; *The Guardian*, 2022; Oguntonla, 2022). These events underscore the vulnerability of Nigeria's infrastructure and the pressing need for adaptive measures. The agricultural sector, accounting for approximately 25% of Nigeria's GDP, is particularly susceptible to climate variability. Changes in rainfall patterns and increased temperatures have reduced crop yields, threatening food security and livelihoods (Trésor Économie, 2024). Additionally, climate change worsens health challenges, with rising temperatures and altered precipitation patterns contributing to the spread of vector-borne diseases and respiratory ailments (ATA Community, 2022; Zwaluw et al., 2025).

Climate change is described as an existential risk that can threaten the survival of individuals, communities, and even humanity, particularly through disruptions to basic needs like food, water, and shelter (Huggel et al. 2022). Similarly, Samiullah & Khanum (2024) assert that *“climate change and environmental degradation are significant threats to the survival of humanity.”* A testament to this is the fact that the number of deaths caused by extreme weather conditions increased by 74% globally between 1980 and 2016. Furthermore, researchers from the University of Washington analysed 64.9 million death records across nine different nations. They concluded that in 2019, a minimum of 1.69 million of these fatalities could be attributed to severe weather conditions. Approximately 356,000 of these were associated with extremely high temperatures, while 1.3 million were connected to exceptionally cold temperatures (Christensen 2021). Also, a report by the United Nations High Commissioner for Refugees states that since 2010, about 21.5 million globally have been displaced annually (United Nations 2021).

Hence, International forums like the United Nations General Assembly, World Health Organization, Intergovernmental Panel on Climate Change, etc., have emphasized the need for climate action at both the individual state and global levels. As a result, the issue of climate change has become a major issue of discourse and debate among policy experts, climate practitioners, policymakers, and scholars, especially considering sustained predictions of climate catastrophes and their intended consequences from individuals and recognized organizations like the Intergovernmental Panel on Climate Change (IPCC).

Awareness of climate change is generally low across many African regions, especially in rural and less educated populations. Women and those who do not speak colonial languages (English, French, Portuguese) are particularly less aware (González & Sánchez, 2022). Africans often perceive climate change through its direct impacts, primarily on agriculture, water, and health, rather than through abstract scientific discourse (González & Sánchez, 2022). A seminal report by Selormey et al. (2019) revealed that while many Africans report experiencing climate change, the levels of understanding and concern vary significantly by country and demographic group. They emphasize that Africa is uniquely vulnerable due to its socio-economic and geographic conditions, necessitating greater awareness initiatives.

In South Africa, Maponya and Mpandeli (2013) found that awareness of climate change among farmers in Mpumalanga was low, particularly due to limited access to climate information. This aligns with Oduniyi's (2013) case study, which highlighted how education level, access to extension services, and media exposure significantly shaped awareness among maize farmers. Further south, Oduniyi and Michael (2018) explored determinants of awareness in rural South Africa and found that socioeconomic status and access to institutional support were pivotal in shaping environmental understanding. On the education front, Nkoana (2020) investigated the effects of environmental education in South African schools, finding a measurable increase in student awareness and risk perception regarding climate change post-intervention. Awareness through formal education is often emphasized as a strategy for long-term climate resilience.

In Nigeria's Niger Delta, Nzeadibe et al. (2011) emphasized that indigenous knowledge and cultural practices can enhance awareness and adaptation efforts, particularly when integrated with formal education strategies. Similarly, an interesting sociopolitical insight comes from Dirksmeier et al. (2023), who found that greater climate change awareness in Sub-Saharan Africa paradoxically correlates with lower

institutional trust, possibly due to perceived government inaction or ineffectiveness. Public awareness of climate change in Nigeria is increasing but remains limited in scope and depth, especially in rural and semi-urban areas. Studies have shown that while a high percentage of respondents may have heard about climate change, understanding of its causes, effects, and mitigation strategies is often low (Azu & Alakwe, 2023); (Umegboli, 2020). For example, farmers in Southwest Nigeria (including Ondo State) are aware of changing climate conditions such as drought and flooding, but this awareness is largely experiential rather than based on scientific knowledge (Okpara et al., 2017).

Some studies have advocated for integrating climate change into Nigerian school curricula and training university educators to improve youth climate literacy (Okoli, 2014; Kadir, 2020). Although, while youth awareness is high in some regions, it is often shallow. A study in Kwara State, Nigeria, found that while undergraduates were aware of climate change, few understood its scientific basis or had actionable knowledge (Abdulqadir et al., 2022). A broader view by Ahmed and Givens (2025) reviewed adaptation strategies across Africa, concluding that education and environmental awareness are central to effective responses, particularly among smallholder farmers. Also, Communication strategies are central to enhancing public consciousness. However, existing approaches often fail to effectively engage local communities due to technical language and a lack of localization (Azu & Alakwe, 2023). Libraries and civil society groups have initiated grassroots efforts to bridge this gap by disseminating climate information in more accessible ways (Nwafor-Orizu & Okonkwo, 2017).

The impacts of climate change in Nigeria are widespread, affecting multiple sectors and compounding existing social vulnerabilities. Ebele and Emodi (2016) identify major climate-related challenges in Nigeria, including erratic rainfall, rising temperatures, desertification, sea level rise, and increased incidence of disease. These issues disproportionately affect agriculture, health, and energy sectors, key pillars of the Nigerian economy (Ebele & Emodi, 2016). Children are among the most vulnerable groups affected by climate impacts. Arowolo (2024) reports that Nigerian children are highly exposed to air pollution, flooding, and food insecurity, which undermines their rights to health, education, and a safe environment. Nigeria ranks among the highest-risk countries globally for climate-related threats to children (Arowolo, 2024).

The agricultural sector has also experienced significant disruptions due to climate change. A study by Adamu Ndawayo et al. (2017) found that farmers in northern Nigeria have observed declining crop yields,

shifting rainfall patterns, and more frequent droughts. However, despite recognizing these changes, many farmers lack the necessary resources, education, and institutional support to adopt effective adaptation strategies. On a broader scale, Hussaini (2015) highlights that climate-induced socio-economic disruptions in Nigeria include forced migration, food insecurity, and threats to national development.

In response to the growing impacts of climate change, Nigeria has developed several climate-related policies and signed international agreements, including the Paris Agreement. However, the implementation of these policies remains notably weak. Akindele and Chabinga (2024) argue that although Nigeria is a significant contributor to greenhouse gas emissions in Africa, it lacks a robust environmental foreign policy and the legal infrastructure necessary to translate international commitments into effective national climate action. At the local level, adaptation efforts are often hindered by a range of social and institutional barriers. Ologeh et al. (2018) observe that government-led adaptation strategies, such as the promotion of improved irrigation systems and climate-resilient crop varieties, are frequently met with resistance due to cultural beliefs, low literacy rates, and insufficient outreach to farming communities.

Additionally, Oluduro (2014) emphasizes the urgent need for a unified legal framework for climate governance across Sub-Saharan Africa, proposing Nigeria as a model for developing continent-wide legal norms. While it is commendable that Nigeria has adopted several key climate policies, including the 2012 Climate Change Policy and the Climate Change Act of 2021, their effectiveness is significantly undermined by weak enforcement mechanisms, limited public engagement, and persistent funding shortfalls (Amuda-Kannike et al., 2023; Kehinde & Abifarin, 2022).

Like any other policy debate, the major political discourse on climate change centres on action. This discussion encompasses a range of arguments, including differing assessments and opinions about the threat posed by climate change, the urgency of the threat, and the practicality, benefits, and disadvantages of various policy alternatives. However, at its core, these discussions revolve around possible approaches to addressing climate change (Dressler and Parson 2019). Indeed, climate discourse in mainstream African media has shifted somewhat toward solutions; however, it is essential to note that social media engagement remains low and disconnected from policy dialogue (Pointer & Matsiko, 2023).

This study zeroes in on a critical question: Does firsthand experience with climate change shape how people perceive it? We are examining

how specific environmental stressors, such as unpredictable rainfall, more frequent floods, rising temperatures, and biodiversity loss, connect to residents' awareness and concern about climate change in Ondo State. Essentially, we want to know whether seeing and living through these changes makes the climate crisis feel more real and urgent for local communities.

1.1. Research Objective

This study aims to assess the level of community awareness of climate change, understand the residents' perceptions and lived experiences, and examine how it correlates with the observed impacts of climate change in Ondo State, Nigeria, to identify awareness gaps and inform targeted adaptation strategies.

This study examines the relationship between direct exposure to climate change impacts (including rainfall variability, flooding, temperature shifts, and biodiversity loss) and climate awareness among Ondo State residents. A central focus is determining whether the lived experience of these phenomena enhances community understanding of climate change and fosters greater adaptive capacity.

1.2. Methodology

This study employed a mixed-methods approach, combining quantitative and qualitative techniques to examine the impacts of climate change in Ondo State, Nigeria. A descriptive survey design was used to capture residents' perceptions and experiences of climate-related changes, while published articles were also reviewed. The study area, Ondo State, was selected for its ecological diversity, encompassing coastal, rainforest, and urban regions, which provided a representative case for assessing climate change impacts in Nigeria.

A stratified random sampling method was used, with a sample size of 400 respondents. Data collection involved a structured questionnaire to understand residents' perceptions of rainfall patterns, floods, temperature shifts, and biodiversity loss. The questionnaire achieved a Cronbach's alpha coefficient of 0.78, confirming acceptable internal consistency. Quantitative data were analysed using descriptive and inferential statistics, while qualitative data were thematically analysed. Ethical considerations included obtaining informed consent from participants, ensuring confidentiality and anonymity, and securing necessary approval. This methodological framework facilitated a comprehensive assessment

of climate change perceptions and impacts in Ondo State, paving the way for informed policy recommendations.

2.0. Theoretical Framework: Socio-Ecological Theory

Urie Bronfenbrenner's Ecological Systems Theory, developed in the 1970s and refined in the following decade, explores human development through a socio-ecological lens. Bronfenbrenner argued that a comprehensive understanding of development requires analysing the complex ecological systems in which individuals grow. His framework evolved to incorporate biological and genetic influences, acknowledging their critical role in shaping development.

The theory centres on the child's innate characteristics and developmental background, which interact with their immediate environments (microsystem) and the connections between these settings (mesosystem). Beyond these direct influences, broader societal structures, such as economic, political, and institutional forces (exosystem), affect developmental contexts. At the outermost level, cultural values, ideologies, and societal norms (macrosystem) shape all other systems (Bukatko & Daehler, 1995).

Social-ecological systems recognize that humans are deeply interconnected with nature, rather than separate from it (Balee, 2006). Early work by Berkes and Folke (1998) challenged the artificial division between social and ecological systems, a perspective later expanded by Berkes and colleagues (Berkes et al., 2003). Contemporary research emphasizes the role of social-ecological keystones, critical elements that sustain system structure and function, as well as the importance of biocultural diversity in strengthening resilience (Winter et al., 2018).

Socio-ecological models explore the dynamic interplay between individual behaviours and broader environmental influences. Initially developed in urban sociology by the Chicago School following World War I, these models arose as a critique of the narrow focus in developmental psychology. By bridging behavioural theories (which examine small-scale interactions) with anthropological perspectives (which consider broader cultural contexts), they provide a more holistic understanding of human-environment relationships.

2.1. Socio-Ecological Theory and Climate Change

The socio-ecological theory posits that human behaviour and societal structures are deeply intertwined with ecological systems. It suggests that

environmental issues, such as climate change, cannot be fully understood without considering both social and ecological dimensions. This theory operates on the premise that humans exist within an interconnected web of social, cultural, political, and ecological systems, where actions in one domain can affect others (Berkes et al., 2003). It emphasizes multi-level interactions between individuals, communities, institutions, and larger ecological systems, focusing on the ways these interactions influence resilience, adaptation, and sustainability (Berkes & Folke, 1998).

In the context of climate change, the theory underlines that the vulnerability and resilience of communities to environmental changes are shaped not just by ecological factors (such as climate events or resource availability) but also by social factors (such as awareness, governance, cultural practices, and socio-economic structures). It argues for a holistic approach to understanding and addressing environmental challenges, acknowledging the role of both human agency and environmental factors (Folke et al., 2002).

2.2. Socio-Ecological Theory and Climate Change in Ondo State

The Socio-ecological theory provides a robust framework to analyse how climate change impacts interact with local social systems and how awareness of these impacts can influence adaptation and resilience at various levels. The ecological system refers to the specific environmental impacts of climate change on Ondo State and Nigeria, such as changes in rainfall patterns, agricultural productivity, water resources, biodiversity, and overall ecosystem health. Ecological resilience in the face of climate change will depend on the ability of natural systems (e.g., wetlands, forests) to adapt to these changes (Folke et al., 2002). Similarly, the theory also requires looking at the social structures in Ondo State and Nigeria, such as communities, government institutions, and cultural practices that affect how individuals and groups perceive and respond to climate change. Awareness, education, and the dissemination of climate knowledge are crucial components of this system (Berkes et al., 2003).

This socio-ecological model highlights that social systems (such as local governance, policies, and community structures) can directly affect the ability of communities in Ondo State and Nigeria to respond to climate change. For instance, if communities are well informed about climate risks and equipped with the knowledge to adapt, they are likely to show greater resilience (Winter et al., 2018). Conversely, a lack of awareness or insufficient policy frameworks may hinder an effective

response to climate impacts, leading to more pronounced vulnerabilities (Berkes & Folke, 1998).

According to socio-ecological theory, there are often feedback loops between social and ecological systems. For example, poor environmental management or lack of awareness may lead to ecological degradation (e.g., deforestation, water scarcity), which in turn exacerbates the social vulnerability of communities (e.g., food insecurity, migration) (Berkes et al., 2003). On the other hand, effective management practices and increased awareness can lead to positive feedback loops where both ecological systems and social structures are strengthened, contributing to greater resilience (Folke et al., 2002).

In conclusion, applying socio-ecological theory to this study allows for a deeper understanding of how both ecological and social systems influence climate change impacts and awareness in Ondo State and Nigeria. By recognizing the interconnectedness of these systems, the study can explore not only how the environment is changing but also how social structures, governance, and community awareness (or the lack of it) affect the capacity of people to adapt and respond.

3.0. Findings and Interpretation

This section presents the results of a field survey conducted in Ondo State, Nigeria, to assess community awareness and perceptions of climate change impacts. The findings are interpreted through the lens of individual and community-level interactions with changing ecological systems

Table 1: Understanding the Impact of Climate Change on the Communities in Ondo State

SECTION A								
S/N	Measurement Items	SA	A	NAD	D	SD	Mean	Std. Dev
1	There is an increase in the intensity and frequency of rainfall in your community	32 (8.4%)	72 (18.7%)	71 (18.7%)	133 (35%)	65 (17.1%)	2.66	1.21
2	There is a frequency of floods in your community	44 (11.6%)	91 (23.9%)	58 (15.3%)	102 (26.8%)	76 (20%)	2.80	1.33
3	You now experience more heat in my community than before	32 (8.4%)	42 (11.1%)	59 (15.5%)	121 (31.8%)	116 (30.5%)	2.33	1.27
4	There is an increase in the frequency of floods and erosion in my community	54 (14.2%)	76 (20%)	64 (16.8%)	96 (25.3%)	76 (20%)	2.83	1.37

5	Some species of fish are now scarce or no longer found in the rivers in your community	37 (9.7%)	55 (14.5%)	69 (18.2%)	115 (30.3%)	91 (23.9%)	2.54	1.29
6	Your community has been experiencing heavy windstorms and thunderstorms.	42 (11.1%)	71 (18.7%)	80 (21.1%)	109 (28.7%)	72 (18.9%)	2.74	1.28
7	There are observable changes in climate.	41 (10.8%)	21 (5.5%)	57 (15%)	146 (38.4%)	108 (28.4%)	2.31	1.25
8	My community has been experiencing heavy windstorms and thunderstorms.	42 (11.1%)	71 (18.7%)	80 (21.1%)	109 (28.7%)	72 (18.9%)	2.74	1.28

Rainfall Patterns

The item "There is an increase in the intensity and frequency of rainfall in your community" revealed that 35% of respondents disagreed and 17.1% strongly disagreed, while only 27.1% agreed or strongly agreed. The mean score of 2.66 (SD = 1.21) suggests weak recognition of rainfall variability.

This contrasts with meteorological data indicating increased rainfall variability in West Africa due to climate change (IPCC, 2022). The low perception may stem from the community's limited access to long-term climatic data and insufficient climate education.

Flood Frequency

Regarding flood frequency, 26.8% disagreed and 20% strongly disagreed, while 35.5% agreed or strongly agreed. The mean score was 2.80 (SD = 1.33), indicating a more balanced perception.

This mixed response aligns with findings that localized flooding in Nigeria has become more intense due to poor drainage and altered rainfall patterns (Adeagbo et al., 2020). Variability in flood experience may reflect uneven exposure to flood risks.

Heat Perception

For the item "You now experience more heat in your community than before," 31.8% disagreed and 30.5% strongly disagreed, with a mean score of 2.33 (SD = 1.27). This suggests a general scepticism toward temperature rise.

Scientific evidence confirms rising temperatures across Nigeria (NIMET, 2021), which are expected to impact health and agriculture.

The gap between data and perception underlines the importance of climate literacy.

Floods and Erosion

A similar trend was observed for floods and erosion: 45.3% disagreed or strongly disagreed, while 34.2% agreed or strongly agreed. The mean score was 2.83 (SD = 1.37).

These perceptions suggest that although some communities recognize environmental degradation, the broader population may not attribute these changes to climate factors, reflecting low climate change attribution awareness (Leiserowitz et al., 2011).

Fish Scarcity

For "Some species of fish are now scarce or no longer found in the rivers," 54.2% disagreed or strongly disagreed, resulting in a mean of 2.54 (SD = 1.29).

This perception overlooks well-documented biodiversity impacts in Nigeria's aquatic ecosystems due to rising temperatures and pollution (FAO, 2020). The lack of ecological awareness in fishing communities might obscure recognition of these effects.

Windstorms and Thunderstorms

Two items assessed perceptions of extreme weather: both yielded a mean score of 2.74 (SD = 1.28), with 28.7% disagreement and 29.8% agreement overall.

The inconsistency in responses may relate to the sporadic nature of such events and varying local experiences, highlighting the need for localized weather impact studies.

Observable Climate Changes

Lastly, for the item "There are observable changes in climate," 66.8% disagreed or strongly disagreed, with a mean of 2.31 (SD = 1.25). This is the lowest recorded perception score.

Despite widespread evidence of climate impacts, this finding illustrates a significant perception gap, possibly driven by limited environmental education and communication.

In conclusion, these results suggest that many residents in Ondo State seem unsure or unconvinced about the impacts of climate change or simply haven't given it much thought. On key issues like rising temperatures, biodiversity loss, and noticeable climate shifts, awareness remains surprisingly low, with most responses leaning toward scepticism or indifference.

Human behaviour doesn't exist in a vacuum. According to socio-ecological theory, the way people think and act is shaped by a mix of personal beliefs, social influences, and the world around them. The lack of awareness in Ondo State suggests we need more than just facts; we need community-centred solutions. This means making climate science relatable, sparking local conversations, and encouraging practical steps that help people adapt and thrive in a changing environment.

4.0. Discussion of Data and Recommendation

The findings from this study paint a clear picture: while climate change is undeniably reshaping Ondo State's environment through erratic rainfall, worsening floods, rising heat, and vanishing biodiversity, many residents remain unaware or unconvinced of these shifts.

Why does this gap exist? For one, people often trust what they see and feel over abstract data. A farmer might notice unpredictable rains but not link them to global climate trends. Others may dismiss gradual temperature rises as just "hotter years" rather than a long-term crisis. This isn't just about scepticism, it's about the disconnect between scientific facts and everyday experience.

Socio-ecological theory helps explain this. A person's understanding of climate change isn't shaped by facts alone. It's influenced by their community, education, media access, and even cultural beliefs. In Ondo State, weak environmental education, sparse media coverage in rural areas, and top-down policies that exclude local voices have left many in the dark.

The consequences are real. When communities don't recognize climate threats, they can't prepare for them. Farmers miss chances to adopt drought-resistant crops. Families rebuild homes in flood-prone areas, unaware that the next disaster looms. Without urgent action, climate impacts will deepen poverty and food insecurity.

Recommendations:

1. **Make Climate Education Local and Relatable:** Teach climate change in a way that connects to people's everyday lives. Use local languages, stories, and practical examples, like changes in farming or fishing, to make the science feel real. Working with schools, traditional leaders, and religious groups can help spread the message faster and deeper.
2. **Put Climate in the Classroom:** There is a need to start teaching climate change in schools, from primary to university level. When young people understand what's happening and why, they can bring that knowledge home and take action in their own lives.
3. **Use Local Media to Share Information:** Not everyone reads scientific reports, but many people listen to the radio or follow WhatsApp groups. Let's use local media channels, especially radio and community programs, to explain climate issues in simple, everyday language.
4. **Involve Community Groups and NGOs:** Community organizations and NGOs are already trusted by the people. They can help organize town hall meetings, share information door-to-door, and run workshops on sustainable practices.
5. **Turn Policies into Action with Community Support:** Nigeria has climate policies, but they won't succeed without local backing. The government should involve communities in planning and decision-making. When people feel heard, they're more likely to participate and take ownership of climate solutions.
6. **Train People in Practical, Sustainable Livelihoods:** Assist farmers and fishers in adopting new, climate-smart practices, such as using drought-resistant seeds or implementing innovative water management methods. This will help them stay productive and secure their income.
7. **Prepare for Disasters Before They Happen:** Set up early warning systems for floods and storms. Share weather updates in real time, especially in vulnerable areas. Simple tools like SMS alerts can save lives and reduce damage.

In summary, climate change isn't just a scientific issue; it's a community issue. People in Ondo State are already living through the effects, but many don't fully understand what's happening or what they can do about

it. By building awareness from the ground up, through education, media, and local partnerships, we can help communities not just survive but thrive in a changing climate.

References

Adamu Ndawayo, B., Shamsudin, M., Radam, A., & Abdullah, A. (2017). Farmers' perspectives on climate change in northern region of Nigeria. *IOSR Journal of Environmental Science, Toxicology and Food Technology*, 11, 58-61. <https://doi.org/10.9790/2402-1103025861>.

Adeagbo, A., Oseni, O., & Adebayo, W. (2020). *Flooding and urban vulnerability in Nigeria: A case study of Ibadan*. Journal of Environmental Management and Tourism, 11(6), 1397-1407. [https://doi.org/10.14505/jemt.v11.6\(46\).01](https://doi.org/10.14505/jemt.v11.6(46).01)

Balee, W. (2006). The research program of historical ecology. *Annual Review of Anthropology*, 35(1), 75-98. <https://doi.org/10.1146/annurev.anthro.35.081705.123231>

Akindele, A., & Chabinga, R. (2024). Navigating Climate Change and Sustainability Solutions: Nigeria's Role in International Environmental Law. *African Journal of Climate Change and Resource Sustainability*. <https://doi.org/10.37284/ajccrs.3.1.2188>.

Arowolo, G. (2024). Children's Rights and the Pursuit of Intergenerational Climate Justice in Nigeria. *Turf Law Journal*. <https://doi.org/10.62726/tlj.v4.36>.

Balee, W. (2006). The research program of historical ecology. *Annual Review of Anthropology*, 35(1), 75-98. <https://doi.org/10.1146/annurev.anthro.35.081705.123231>

Berkes, F., & Folke, C. (Eds.). (1998). *Linking social and ecological systems: Management practices and social mechanisms for building resilience*. Cambridge University Press.

Berkes, F., Colding, J., & Folke, C. (2003). *Navigating social-ecological systems: Building resilience for complexity and change*. Cambridge University Press.

Bukatko, D., & Daehler, M. W. (1995). *Child development: A thematic approach* (2nd ed.). Houghton, Mifflin and Company.

Christensen, J. (2021). Study finds 'very concerning' 74% increase in deaths associated with extreme heat brought on by the climate crisis. *CNN Health*. Available at: <https://edition.cnn.com/2021/08/19/heat/death-concerning-study/index.html> (Accessed: 02/10/2023).

Covey, C., AchutaRao, K. M., Cubasch, U., Jones, P., Lambert, S. J., Mann, M. E., Phillips, T. J., & Taylor, K. E. (2003). *An overview of results*

from the Coupled Model Intercomparison Project. *Global and Planetary Change*, 37(1–2), 103–133. [https://doi.org/10.1016/S0921-8181\(02\)00193-5](https://doi.org/10.1016/S0921-8181(02)00193-5)

Dessler, A. E., & Parson, E. A. (2019). *The Science and Politics of Global Climate Change: A Guide to the Debate* (3rd ed.). Cambridge University Press.

Ebele, N., & Emadi, N. (2016). Climate Change and Its Impact in Nigerian Economy. *Journal of Scientific Research and Reports*, 10, 1-13. <https://doi.org/10.9734/JSRR/2016/25162>.

Folke, C., Carpenter, S. R., Elmquist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: Building adaptive capacity in a world of transformations. *Ambio*, 31(5), 437–440. <https://doi.org/10.1579/0044-7447-31.5.437>

Food and Agriculture Organization of the United Nations (FAO). (2020). *The State of World Fisheries and Aquaculture 2020: Sustainability in action*. <https://www.fao.org/3/ca9229en/CA9229EN.pdf>

Gates, W. L., Boyle, J., Covey, C., Dease, C., Doutriaux, C., Drach, R., Fiorino, M., Gleckler, P., Hnilo, J., Marlais, S., Phillips, T., Potter, G., Santer, B., Sperber, K., Taylor, K., & Williams, D. (1998). An overview of the results of the Atmospheric Model Intercomparison Project (AMIP I). *Bulletin of the American Meteorological Society*, 73(12), 1962–1970. <https://doi.org/10.1175/1520-0477-73.12.1962>

Hansen, J., Johnson, D., Lacis, A., Lebedeff, S., Lee, P., Rind, D., & Russell, G. (1981). Climate impact of increasing atmospheric carbon dioxide. *Science*, 213(4511), 957-966. <https://doi.org/10.1126/science.213.4511.957>

Huggel, C., Bouwer, L., Juhola, S., Mechler, R., Muccione, V., Orlove, B., & Wallmann-Helmer, I. (2022). The existential risk space of climate change. *Climatic Change*, 174. <https://doi.org/10.1007/s10584-022-03430-y>.

Hussaini, A. (2015). An overview of the socio-economic impact of climate change in Nigeria., 3, 21-35. <https://doi.org/10.14196/hse.v3i3.157>.

Intergovernmental Panel on Climate Change (IPCC). (2001). *Climate change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change* (J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, & C. A. Johnson, Eds.). Cambridge University Press.

Intergovernmental Panel on Climate Change. (2022). *Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report (AR6)*. Cambridge University Press. <https://www.ipcc.ch/report/ar6/wg2>

Leiserowitz, A., Smith, N., & Marlon, J. (2011). *American Teens' Knowledge of Climate Change*. Yale University.

Nigerian Meteorological Agency (NiMet). (2021). *2021 Climate Review Bulletin*. <https://www.nimet.gov.ng>

Bennett, N. J. (2020). The role of social science in marine conservation: A systematic review of the literature. *Marine Policy*, 113, 103805. <https://doi.org/10.1016/j.marpol.2019.103805>

Ologeh, I., Akarakiri, J., & Adesina, F. (2018). Constraints and Limits to Climate Change Adaptation Efforts in Nigeria, 159-174. https://doi.org/10.1007/978-3-319-64599-5_9.

Oluduro, O. (2014). Mitigating the effects of climate change in Sub-Saharan Africa via an effective international legal standard: a case study of Nigeria

Winter, K. B., Lincoln, N. K., & Berkes, F. (2018). The social-ecological keystone concept: A quantifiable metaphor for understanding the structure, function, and resilience of a biocultural system. *Sustainability*, 10(9), 3294. <https://doi.org/10.3390/su10093294>