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Abstract

This study employs topological analysis to investigate the relationship between
volatility and call option prices. Our results reveal a continuous, increasing, and
predictable relationship between the two variables, with no distinct clusters or
discontinuities. The topological space formed by the call option prices is a
simple, connected, and including curve, implying that small changes in volatility
result in predictable changes in call option prices. We also, developed and prove
three theorems; the Call option price function is continuous with respect to
volatility; the Call option price function is monotonically increasing with respect
to volatility; and the volatility and Call option price are homeomorphic. These
theorems demonstrate the topological properties of the Call option prices and
volatility providing new insights into the behavior of option prices. In order to
attest to the robustness of our topological analysis, quantile analysis was also
considered to understand the proportion of data points below specific values
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which by implications enables investors and traders, to estimate the probability
of call option prices exceeding certain thresholds. These findings have
significant implications on option pricing models and risk management
strategies, enabling investors and traders to make more informed decisions
about option purchases and sales.

Keywords: | olatility, Stock prices, Continuity, Monotonicity and Topological spaces.

1. Introduction

The relationship between volatility and call option prices is fundamental
aspect of financial market, and understanding its topological features is is
crucial for investors, risk managers and financial analysts. Volatility, a
measure of the uncertainty or risk associated with the underlying asset,
plays a significant role in determining option prices. Call options, which
give the holder the right to buy an underlying asset at a specified price,
and are sensitive to changes in volatility, and their prices reflect the
market’s expectations of future price movements. The cost of the option
lies on the underlying asset, which is usually a stock, commodity,
currency or an index (Kwok, 2008). The holder has the right but cannot
be compelled to buy, for European call option. In other words,
nonappearance of transactions costs, an in-the money option is always
exercised on the expiration date if it has not been exercised earlier, (Hull,
2012). More so, recent researches have shown that implied volatility is a
key determinant of option price, and its monotonicity plays a significant
role in understanding option price dynamics. Studies have demonstrated
that implied volatility tends to increase as the strike price moves away
from the at-the-money point, resulting in a volatility smile or skew. The
phenomenon has important implications for option pricing and risk
management.

However, the relevance of option valuation was first demonstrated by
Black-Scholes (Black & Scholes, 1973) when option faced difficulties in
valuation of option at expiration. The Black-Scholes equation has been
used widely in many financial applications. For instance, (Marcelo et
al.,2014) studied implied volatility and implied risk-free rate of return in
solving systems of Black-Scholes equations. In the same vein, (Babasola
et al, 2008) analyzed Black-Scholes formula for the valuation of
European options using Hermite polynomials. Several scholars have
written very well on Black-Scholes models such as (Shin & Kim, 2016;
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Rodrigo & Mammon,2006; Osu et al.,2009; Osu,2010; Nwobi et al.,2019;
Amadi et al.,2024), etc.

The origin of this work lies in the study of (Amadi et al.,2024). This is
so, since the path of the stock price method can be allied to his
description of the random collision of some tiny particles with the
molecules of the liquid he introduced, hence the name Brownian motion.
Now, the market price behavior shows the characteristics as a stochastic
process called “Brownian motion” or Wiener process with drift. It is an
important example of stochastic processes satisfying a Stochastic
Differential Equation (SDE) displayed in Figure 1

Figure 1: Sample trajectories of the stock price process following Black-Scholes Model

The relationship between volatility and call option prices is a crucial
aspect of financial markets, and understanding its topological features
can provide valuable insight for investors and risk managers. This study
focuses on the topological analysis of volatility and call option prices,
exploring the continuity and monotonicity of their relationships. We also,
developed and prove three theorems; the Call option price function is
continuous with respect to volatility; the Call option price function is
monotonically increasing with respect to volatility; and the volatility and
Call option price are homeomorphic. These theorems demonstrate the
topological properties of the Call option prices and volatility providing
new insights into the behaviour of option prices. To validate our analysis,
quantile was introduced to provide a comprehensive understanding of
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the distribution of call option prices and their relationship with volatility.
By this analysis, we can gain insight into the probability of a call option
price falling within a specific range. To this end, this type of work has
not been elsewhere as these widens the area of application of problem of
this nature.

For the purpose of this study, the paper is arranged as follows:
Section 2.1 presents the Mathematical preliminaries, Results and
discussion are seen in Section 3.1 and paper is concluded in Section 4.1,

2. Mathematical Preliminaries

Here we present some definitions as foundations of this mathematical
finance models.

Definition 1. Probability space: This is a triple (Q,IF, 50) where o

represents a set of sample space,F represents a collection of subsets of @
, while, is the probability measure defined on each event AcF . The

collection F is a ¢ -algebra or ¢ -field such as oeF and F is closed
under the arbitrary unions and finite intersections. Hence it is called
probability measure when the following condition holds.

@  P(A)=0 forall AcQ 1
i P(Q)=1 ©)
(i) ABcQ, AnB=g¢then P(AUB)=P(A)+P(B) (3)

Definition 2, Normal Distribution: A normal distribution function is
a peculiar distribution in probability theory and is usually used for
modeling asset returns. A normal distribution is used in the Black-
Scholes Partial differential equation to value European options. A normal
distribution depends on two parameters, (Robert, 1964).

(i) Mean, #eR | is the expectation of a random variable normal
distribution.
(i) Variance,0° >0, deals with the magnitude of the spread from the

mean.
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In Black-Scholes formula, normal distributions are used. The cumulative
distribution, usually denoted as ¢(X), is the probability that X will be
equal to or less than X expressed as F .(x)=P(X<x). A standard

normal cumulative distribution function is defined as.

1 o« ©
¢(X):EJ._°°€ 2dt )

A normal distribution is a symmetric distribution, which means that it
touches around a vertical axis of symmetry. Obviously, there is a
connection between any given points with same distance to the vertical
axis. This relationship is defined in equation (5)

#(x)=1-¢(-x) ©®)

Definition 3. A o -algebrais a set F of subsets of @ with the following
axioms:

@) If Ael,then A°cF %
(i) If A, A,.. eF, then OA“ﬁA( cTF (8)

Clearly ,A\C '=Q— A is the complement of A.

Definition 4. If F is a ¢ —algebra in Q. thenQ is called a measurable
space and the members of Fare called the measurable sets in Q.

Definition 5. Let (Q, fm) be a measurable space .A map
uM->R= [0, o) U {00} is called a measure provided that

0 u(g)=0 o)
(i ﬂ[fj/x]:iu(m (10)

Definition 6. Stochastic process: A stochastic process X (t) is a
relation of random variables{X[ (7).teT,ye Q}, ie., for each t in the
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index set T, X (t) is a random variable. Now we understand t as time

and call X (t) the state of the procedure at time t . In view of the fact

that a stochastic process is a relation of random variables, its requirement
is similar to that for random vectors.

It can also be seen as a statistical event that evolves time in
accordance to probabilistic laws. Mathematically, a stochastic process
may be defined as a collection of random variables which are ordered in
time and defines at a set of time points which may be continuous or
discrete.

Definition 7. A stochastic process whose finite dimensional probability
distributions are all Gaussian.(Normal distribution).

Definition 8. Random Walk: There are different methods to which we
can state a stochastic process. Then relating the process in terms of
movement of a particle which moves in discrete steps with probabilities
from a point x=a to a point x=b . A random walk is a stochastic

sequence {S n} with § =0, defined by

S,=2 % (11)
k-1

where X, are independent and identically distributed random vatiables,
(Westergren & Rade 2003).

Definition 9: Stochastic Differential Equation (SDE)

Let S ('[) be the price of some risky asset at time { ,and & ,an expected

rate of returns on the stock and dt as a relative change during the
trading days such that the stock follows a random walk which is govern
by a stochastic differential equation.

dS(t)=aS(t)dt+oS(t)dw, (12)
Where, & is drift and o the volatility of the stock,W, is a Brownian

motion or Wiener’s process on a probability space (Q, &, go),(f is a
o —algebra generated by W,,t >0 .
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Theorem 1.1: (Ito’s formula) Let (Q, p.a, F(,B) be a filtered probability
space X = {X,t > 0} be an adaptive stochastic process on

(Q, p.a, F(ﬁ) possessing a quadratic Variation(X) with SDE defined

as:

dX (t)=g(t, X (t))dt+f (t, X (t))dw (t)  (13)
teR and for u=u(t, X (t) e C**(IIxR))

ou _ou o°u ou
du(t, X (t)) = {at g+ 2f267}d f—dW()(14)

Nevertheless, the dynamics of option pricing is given by the partial
differential equation as follows:

N1 2Szazv+rsg—\s/—rv 0 (15)

ot 2 0S°

To eliminate the price process in (15) slightly gives the Black-Scholes
analytic formula for Call and Put options:

The analytic formula for the prices of European call option is given as
follows

o SN(d) N (d,)

In ( J
d, = (16)

d2=d1—a\/_

where C is Price of a call option, S is price of undetlying asset, K is
the strike price,r is the riskless rate ,T is time to maturity,0" is variance of
underlying asset,0 is standard deviation of the (generally referred to as

volatility) underlying asset, and N is the cumulative normal distribution.
Similarly, the formula for prices of European put option is given as
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P=SN(d,)-Ke™"N(d,) (17)

Where P is the price of a put option and the meaning of other
parameters remain the same as in (16) see (Westergren & Rade,2003;
Hull,2003; Higham,2004), and (Hull,2012), etc.

2.1. Mathematical Method of Analysis

Let’s denote the volatility aso and the call option price asC(G) . The
method of analysis can be represented mathematically as:

Mapping: Define a mapping fZG—)C(O‘) that assigns to each

volatility level & a corresponding call option price C (O‘ )

Topological space: Consider the topological space (Z,T) where Y. is
the set of volatility levels and 7 is the topology induced by the mapping

f.
Connectedness: Analyze the connectedness of the space (Z,T) by

examining the continuity of the mapping f:oc—>C (O‘)

Theorem 2.1 (Continuity of Call option prices): The Call option price function
C :R+ — R+ is continuous with respect to the volatility o € R + .

Proof:

Leto, € R+be a given volatility. We need to show that for any & >0

such that |C (O‘O) |< & whenever |0 -0, |<d . Using Black-Scholes

model, we have:

C(c)=S,N(d,)-Ke"™N(d,)
where d, :<In(SO / K)+(r+o2 /2)T)/(0'\/'IT) ,d, =d, —o/T.
Since N(X) is a continuous function and d, and d, are continuous

function of o . We have that C (O‘) is a continuous function of o .
Moreover, using the fact that the Black-Scholes model is a continuous

function of o, We show that C (O' )is continuous function of & .
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Therefore, the option price function C is continuous with respect to the

volatility o .

Monotonicity:  Investigate the monotonicity of the mapping
f : 0 — C (o) by analyzing the behavior of the derivative dC(o)/ do .

Theorem 2.2 (Monotonicity of call option): The Call option price function
C:R+ >R+

is monotonically increasing with respect to the volatility @ € R+

Proof:
Let 0;,0, € R+ with 0, <0, .we need to show that C(o;) e C(o,) .

Using the Black-Scholes model, we have:
0C /9o =S,NTN(d,) >0

where N'(X) is the derivative of the cumulative distribution function

N(X). Since 8C /0o >0. we have that C(0o) is a monotonically

increasing function of o . Therefore, the Call option price function C is
monotonically increasing with respect to the volatility &

Topological invariants: Calculate topological invariants, such as
persistence diagrams or Betti numbers, to quantify the topological

features of the space (z, T) .
Topology: Use topological tools, such as persistent homology, to analyze
the topological properties of the space (Z, T) .

Theorem 2.3 (Homeomorphism of volatility and Call option prices): The volatility
o € R+ Call option price C € R + are homeomorphic, i.e., There exists

a continuous bijection f : R+ — R+ such that f (O') =C.

Proof:

Since C is a continuous and monotonically increasing function of o .
(by theorem 1 and 2), we can define a function f :R+—>R+ by

f(O') =C . Using the fact that C is a continuous and monotonically

increasing function, we can show that f is a homeomorphism.
Therefore, the volatlity o and the Call option price C are
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homeomorphic. These theorems demonstrate the topological properties
of the Call option prices and volatility, which have implications for
investment strategies and risk management.

Function Analysis: Apply function analysis techniques such as operator

theory, to study the properties of the mapping f 10— C (O')

The relationship between volatility and call option prices can be
represented mathematically using equation such as:

C(o)= f (o) (option pricing function) 19

dC(o)/do >0 (monotonicity condition)
By analyzing the topological properties of the space (Z,T) and the

mapping fZO'—)C(O') , we can gain insights into the complex

relationship between volatility and call option prices. The above ideas can
be seen in the following books (Gunnar and Mikael, 2021), (Herbert and
John, 2010), (James and Munkres, 1984), (Erik, 2013).

2.2. Quantile Analysis of Call Option Prices

In order to validate our mathematical analysis, we apply quantile analysis
to estimate the probability of a call option price exceeding a certain
threshold. Hence, the formula is given as:

. (i-05)
Quantile = ——= (1.20)
n
where 1 is the rank of the observation (from 1 to N ), N is the total
number of observations, (Azor, 2021).

3. Results and Discussions

In this Section we present the computational results for the problem
formulated in Section 2.1. The table results are implemented in Matlab
programming language.

Table 1: Call option prices and their corresponding varying volatilities with the
following parameter values S, =40, K =25,t =1, and r =0.2

Volatility (o) Call Option Prices

0.25 19.54
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0.3 19.57
0.35 19.64
0.4 19.75
0.45 19.91
0.5 20.12
0.55 20.36
0.6 20.64
0.65 20.94
0.7 21.27
0.75 21.62
0.8 21.99

The call option price increases steadily as volatility from 0.25-0.8, the rate
of increase in call option price accelerates as volatility approaches higher
levels(above 0.6), The relationship between volatility and call option
prices appears to be monotonic, meaning that as volatility increases; the
call option prices always increases. This situations, means that the
positive relationship between volatility and call option prices is consistent
with financial theory, which suggests that higher volatility increases the
likelihood of extreme price movements, making options more valuable;
the accelerating rate of increase in call option price at higher volatility
levels suggests that options become increasing sensitive to changes in
volatility as volatility increases. Therefore, understanding the impact of
volatility on call option prices can help investors and traders make more
informed decisions about option purchases and sales, see Table 1.

By applying Subsection 2.1.1 the gives the following topological
interpretations:

The data represents a topological space where volatility is the
underlying parameter and call option prices are the corresponding values.
As volatility increase from 0.25-0.8, the call option prices form a
continuous and connected space.

Key features:

e Connectedness: The call option prices form a connected space,
meaning that small changes in volatility results in small changes
in call option prices.

e Monotonicity: The relationship between volatility and call
option prices is monotonic , meaning that as volatility increases,
call option prices always increase.
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e Smoothness: The data suggests a smooth relationship between
volatility and call option prices, with no abrupt changes or
discontinuities.

In all, the topological space formed by call option prices is a one
dimensional manifold, where each point corresponds to a specific
volatility level. The continuous and connected nature of the space implies
that small changes in volatility result in predictable changes in call option
prices. The topological properties of the call option prices can be used to
inform option pricing models and risk management strategies.

Topological Analysis: The data represents a mapping between
volatility and call option prices, forming a topological space. Let’s analyze
the topological features:

e Increasing function: The call option prices increase as volatility
increases, indicating a monotonic relationship.

e Continuity: The data points form a continuous curve,
suggesting that small changes in volatility result in small changes
in call option prices.

e No holes or gaps: The data does not exhibit any holes or gaps,
indicating that the topological space is connected.

In general, the topological space is a simple, connected, and continuous
curve, where each point corresponds to a specific volatility level and call
option price. The monotonicity and continuity of the relationship
between volatility and call option prices suggest that topological space is
well-behaved and predictable.

e C(Clustering and sensitivity: The data does not exhibit any
clustering or grouping of call option prices, suggesting that this
relationship between volatility and call option prices is smooth
and continuous.

e Sensitivity: The call option prices are sensitive to changes in
volatility, with higher volatility levels resulting in higher call
option prices.

In this scenario, the topological analysis provides insight into the
behavior of call option prices under different volatility levels. Therefore,
understanding the topological features of the relationship between
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volatility and call option prices can inform option pricing models and risk
management strategies.
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Table 2: The quantiles of call option prices representing the proportion of data
points below specific value

Volatility ( O') Call Option Price Quantile
0.25 19.54 0.083
0.3 19.57 0.17
0.35 19.64 0.25
0.4 19.75 0.33
0.45 1991 0.42
0.5 20.12 0.5
0.55 20.36 0.58
0.6 20.64 0.60
0.65 20.94 0.75
0.7 21.27 0.83
0.75 21.62 0.92
0.8 21.99 1.00

It is clear that in Table 2 ,8.33% of call option prices are below
19.53(corresponding to volatility 0.25), 16.67% of the call option prices
are below 19.57 (corresponding to volatility 0.3),50% of the call option
prices are below 20.12(corresponding to volatility 0.5), which is the
median. Finally,83.33% of call option prices are below 21.27 which
corresponds to volatility 0.7

The quantile provides insight into the distribution of call option prices
and can be used to estimate the probability of a call option price falling
within a specific range. Understanding the quantile of call option prices
can help investors and traders to estimate the probability of a call option
price exceeding a certain threshold. It will also identify potential trading
opportunities based on the distribution of call option prices. To this end,
develop risk management strategies that account for the tail behaviour of
call option prices.

4. Conclusion

In conclusion, our topological analysis of the relationship between
volatility and call option prices reveals a continuous, increasing, and
predictable relationship between the two variables. The absence of
distinct clusters or discontinuities suggests a smooth and consistent
relationship, allowing for accurate predictions of call option prices based
on changes in volatility. Our theorems demonstrate that the Call option
price function is a continuous and monotonically increasing function of
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volatility, and that the volatility and Call option price are homeomorphic.
However, quantiles analyses were considered which offered a nuanced
understanding of the probability of prices falling within specific ranges.
The key contribution to knowledge is the establishment of topological
framework for analyzing the relationship between volatility and Call
option prices, with implications for investment strategies and financial
decision making. This study opens up new avenues for research in
financial mathematics and computational finance, and has the potential
to inform the development of more accurate and robust option pricing
models.
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