African Journal of Public Administration and Environmental Studies (AJOPAES)

ISSN 2753-3174 (Print) ISSN 2753-3182 (Online)
Indexed by Sabinet
Volume 3, Number 1, April 2024

Pp 53-77

Harnessing the Power of Renewable Energy for Rural Development in Africa: A Transdisciplinary Approach

DOI: https://doi.org/10.31920/2753-3182/2024/v3n1a3

Motadi Masa Sylvester

Department of Public Administration, University of Venda Private Bag, X5050, Thohoyandou, 0950

&

Tyanai Masiya

School of Public Management and Administration University of Pretoria Private Bag X20, Hatfield, 0028

Abstract

This article seeks to evaluate the revolutionary potential of renewable energy in sparking rural development in Africa using a transdisciplinary approach. In the African rural environment, renewable energy has enormous promise. However, the use of these resources is still minimal. Also, the route to rural energy security in Africa is complicated by a complex confluence of technological and regulatory shortcomings, in addition to insufficient infrastructure, financial restrictions, and social impediments. The dynamism evident in the link between energy and development is examined and interpreted in this study using content analysis from secondary sources. The study draws on data from scholarly works, regulations, official statistics, and research conducted by international groups. The research first highlights the critical role that energy security plays in rural development, with a focus on how it affects vital sectors including healthcare, education, agriculture, and local entrepreneurship. Additionally, it highlights the potential socio-economic and environmental advantages of

renewable energy sources, such as solar, wind, hydro, and bioenergy, as long-term solutions for rural energy insecurity. The article concludes that, rather than merely being a technical problem, using renewable energy for rural development in Africa is a complicated tapestry of socio-political, economic, and environmental factors. It advocates for the requirement of a comprehensive, transdisciplinary approach to problem-solving that transcends traditional academic boundaries and unites a variety of stakeholders in a coordinated effort to achieve sustainable development.

Key words: Africa, Energy security, Renewable energy, Rural development, Sustainable development

Introduction

Energy security has become a focal point of the diverse economic development debate because it has a significant impact on many facets of socioeconomic development (International Energy Agency, 2019). This is particularly relevant to the rural areas that make up Africa's core, but where energy shortages continue to obstruct development in vital sectors like healthcare, education, agriculture, and local entrepreneurship (Practical Action, 2020).

In general, Africa's energy security is a complex mosaic of potential and challenges. According to Diop (2017), the lack of dependable, inexpensive electricity not only hurts rural economies but also exacerbates poverty and inequality, undercutting Africa's hopes for sustainable development. Ondraczek, Komendantova, and Patt (2015) highlight the continent's enormous untapped potential for renewable energy. They contrast this abundance with this traditional narrative of deficit, viewing it as a transformative opportunity to achieve both energy security and socioeconomic advancement in rural areas.

With its potential to lessen the negative consequences of traditional energy sources and favourably influence rural development, renewable energy is becoming a more widely accepted prospect in Africa (World Bank, 2017). Furthermore, due to the negative environmental effects of fossil fuel use, renewable energy is now necessary for Africa's sustainable future (Edenhofer et al., 2018). Despite this revolutionary potential, there are several obstacles in the way of Africa's rural development with renewable energy. An approach that transcends the conventional boundaries of separate disciplines and embraces integrated, transdisciplinary knowledge is required due to the interaction of technological, economic, and political elements (Kates et al., 2001). By

offering a comprehensive, yet nuanced analysis of the potential of renewable energy for rural development in Africa, this research aims to contribute to this story.

Problem Statement

Over 600 million people in Africa do not have access to electricity. The majority of these live in rural and off-grid areas (IEA, 2019). This energy shortage has a negative impact on several aspects of rural development, including life quality, economic prospects, and environmental sustainability (Practical Action, 2020). The route to rural energy security in Africa is complicated by a complex confluence of technological shortcomings, regulatory shortcomings, insufficient infrastructure, financial restrictions, and social impediments (Bhattacharyya, 2013). Africa has a wide range of energy-related problems, calling for long-lasting and multifaceted actions. According to Goldemberg (2000), the solution rests in building robust and resilient energy systems that can adjust to changing demands while minimising negative environmental effects. Jacobson and Delucchi (2011), on the other hand, call for a switch to only renewable energy sources, highlighting the unrealized potential of these resources, notably in Africa.

In rural Africa, renewable energy has enormous promise. However, the use of these resources is still minimal, accounting for less than 10% of global energy consumption (IRENA, 2018). Renewable energy's technological viability and environmental advantages are well recognised, but its socio-economic and political complexities frequently get less attention (Schwerhoff & Sy, 2017). In light of the shortcomings and challenges noted, this paper takes a transdisciplinary approach to thoroughly evaluate the potential of renewable energy for rural development in Africa. The article attempts to explain the complex processes at play and contribute to a comprehensive understanding of how renewable energy may be successfully used to fuel Africa's rural development by combining many perspectives: technical, economic, environmental, social, and political.

Methodology

To answer the research question, 'How can the potential of renewable energy be effectively exploited to encourage rural development in Africa utilising a transdisciplinary approach?' A thorough literature evaluation was done. This was because the use of secondary sources allows for the

consolidation of a significant body of knowledge, providing for a full comprehension of the subject area. To better understand the dynamic relationship between renewable energy and rural development in Africa, content analysis is a useful analytical method. In order to ensure a diverse pool of opinions and facts, information from several academic papers, directives, government statistics, and international organisation studies was reviewed. The research strategy takes a transdisciplinary approach to the topic at hand, one that does more than just reference related disciplines of study. Choi and Pak (2006) argue that to solve complex real-world issues, it is necessary to break through disciplinary walls. This evaluation was carried out with painstaking rigour, keeping in mind the necessity for a fair and complete representation of many viewpoints.

Accredited published literature was included in this study. The documents that were less than 10 years old were preferred. However, older sources were included that had persuasive information. The data was analysed using thematic data analysis. The themes that were prominent in the desk-based literature evaluation were adopted.

Discussion

The Role of Energy Security in Rural Development

Energy security may be defined as constant and cheap access to the energy resources required to support livelihoods. It is a crucial pillar of economic development (Bhattacharyya, 2011). Winchester (2012) expands on the issue of energy security by including the aspects of energy quantity and quality, arguing that energy security entails not just access to energy but also its dependability, sustainability, and cleanliness. However, Sovacool (2011) warns against a one-size-fits-all approach to energy security, calling for a nuanced approach that takes regional and national circumstances into consideration; hence, it is vital to define energy security within the context of Africa's rural populations.

In Africa, the interaction between energy security and rural development is complex, showing the substantial socioeconomic consequences of insufficient electricity access. Energy poverty, or a lack of access to modern energy services, has a direct impact on rural development, according to Nussbaumer, Bazilian, and Modi (2012), since it impedes the provision of important services such as clean water, healthcare, and education, eventually prolonging the poverty cycle. This discovery is consistent with Van der Vleuten and Stam (2017), who claim

that energy security is the foundation for basic social activities and that a lack of it hinders rural development.

Energy security connects with several critical sectors for rural development. For example, medical equipment, vaccine storage, and illumination all rely on reliable electricity (Adair-Rohani et al., 2013). A shortage of power can hinder the use of technology-enhanced learning aids in education (Alstone, Gershenson, and Kammen, 2015). Energy instability in agriculture can reduce output by restricting the adoption of current farming technology (FAO, 2020). Finally, uneven energy availability, which limits the spectrum of feasible firms and their operational efficiency, might stymie local entrepreneurship, which has been highlighted as a driver of rural development (Ndemo and Smallbone, 2020). As a result, improving energy security may have farreaching positive consequences in a variety of areas crucial to rural development.

Current discussion on renewable energy for rural development in Africa

Renewable energy technology in rural Africa can boost economic growth and livelihoods. This continent's enormous solar, wind, and biomass resources might leapfrog fossil fuel-based energy production (IRENA, 2021). Despite this promise, rural Africa's renewable energy systems have had mixed success and access. In rural Africa, renewable energy increases energy security, reduces greenhouse gas emissions, and creates jobs. Solar photovoltaic systems and wind turbines are particularly useful for remote places because of their scalability and falling prices (World Bank, 2020). These systems empower communities by improving access to information, education, and health services while providing basic electricity. High initial investment costs, a lack of local technical competence, and sustainable business models remain obstacles (UNEP, 2019).

Local socio-economic and environmental circumstances must be considered when integrating renewable energy into rural African economies. Strong foundations for project sustainability beyond initial financing cycles are a major concern. Studies have shown that community engagement and capacity building are vital to the success of renewable energy project (Bazilian et al., 2013). Additionally, technologies that are not adapted to local demands and conditions are unlikely to be accepted or maintained. Additionally, rural towns sometimes lack the funds to develop renewable energy systems.

Microfinancing, grants, and mobile payment options are essential to addressing these constraints. These methods may fund renewable energy infrastructure and make projects profitable for the community (Ackermann and Söder, 2015).

Rural Africa needs strong legislative frameworks and institutional assistance to utilise renewable energy. To address rural demands, national renewable energy policies and plans must be well-crafted and implemented. These policies should encourage renewable technology investment and cheap, dependable energy services (Schwerhoff and Sy, 2017). Institutional support also builds local renewable energy management, operation, and maintenance capabilities. This assistance ensures that deployed systems last and provide long-term advantages. For instance, educating local personnel in solar panel installation and maintenance has improved rural solar energy project success and sustainability (Atkinson et al., 2020).

Transdisciplinary techniques that incorporate technological, social, and economic aspects might improve rural African renewable energy. These methods incorporate government, community, research, and commercial sector partnerships. Collaboration can boost innovation and make renewable energy projects socially and economically sustainable. Transdisciplinary research can also discover and solve hurdles to renewable energy adoption by creating information relevant to rural populations' needs. This strategy invites local stakeholders to co-create solutions, boosting the possibility of renewable energy solution implementation and acceptance. (Nygaard and Dafrallah, 2016).

Renewable Energy: An Overview and its Potential

Types of Renewable Energy Sources: Solar, Wind, Hydro, and Bioenergy

Solar Energy

It is incontrovertible that the sun provides a virtually unlimited, clean source of power, with solar energy emerging as a promising solution to energy challenges in rural Africa (Hernandez et al., 2014). The solar potential of Africa, particularly the photovoltaic (PV) and concentrated solar power (CSP) technologies, is immense (Meyer, van der Zwaan, & Härtel, 2017). Notwithstanding, Edenhofer et al. (2020) argue that the high initial capital costs and the intermittent nature of solar power may pose challenges for its widespread adoption. Balancing these two points

of view, solar energy has the potential to significantly improve rural energy security with the correct investments and policies.

Wind Energy

Wind energy, another robust and widely available resource, holds significant potential for rural electrification in Africa. Using the untapped wind corridors, Kaunda et al. (2012) paint a positive picture of the potential for wind generation across the continent. However, Gatzert and Kosub (2016) note that the relative complexity of wind energy systems and the fluctuation of the wind may prevent their broad adoption. However, wind energy may have a significant impact on rural Africa's balance of renewable energy sources.

Hydro Energy

Africa's vast hydroelectric potential, particularly in the form of microhydro systems, offers a compelling solution for rural electrification (Kirubi et al., 2009). Eberhard et al. (2011) draw attention to the fact that there might frequently be significant environmental and social trade-offs associated with the development of hydroelectric resources. In this situation, harnessing hydroelectric energy necessitates careful planning and eco-friendly procedures.

Bioenergy

Bioenergy, in the form of biomass and biofuels, is widely used in rural Africa (Schure et al., 2017). However, Bailis et al. (2015) found that the extensive usage of traditional biomass was associated with deforestation and health issues. Therefore, cutting-edge, sustainable bioenergy technologies, including biogas and contemporary cookstoves, can provide safer, cleaner energy options. In essence, there are advantages and disadvantages unique to each renewable energy source. The secret to using these resources is to design an ideal energy mix that caters to the particular circumstances and requirements of each rural location.

Current Trends in Renewable Energy Technologies in Rural Africa

Renewable energy technologies in rural Africa have evolved due to technological advances and socio-economic changes. Recent talks focus on the shift from biomass-based systems to more efficient, sustainable, and sophisticated energy sources, including PV, wind, and biofuels. Due to its scalability and quick cost reduction, solar PV technology is becoming more popular for rural electrification, according to Kammen and Sunter (2020).

Battery storage developments have also made renewable systems more viable by solving erratic energy supply, a prevalent concern with solar and wind energy. According to Ondraczek (2019), storage technologies have improved system dependability, which is essential for remote energy access. According to Moyo et al. (2022), microgrid technology has helped decentralise energy systems, allowing rural communities to control their own energy supplies.

Impact of Renewable Energy on Rural Development

Renewable energy affects rural development beyond electricity. Recent studies show that rural renewable energy deployment may boost economic and social growth. Baurzhan and Jenkins (2021) found that renewable energy enhances educational performance by providing stable electricity for lights and IT, increasing study hours, and increasing digital resource availability.

Renewable energy projects have been proven to provide jobs in building, operation, maintenance, and related services like manufacturing and logistics. Foster and Heeks (2022) highlight how local renewable technology capacity building improves energy infrastructure and promotes the local economy by producing transferable skills. Additionally, greater energy availability improves healthcare services and reduces household air pollution, which is a major concern with biomass-based cooking techniques (Aklin et al., 2021).

Policy and Regulatory Environment

The policy and regulatory environment are critical to shaping the trajectory of renewable energy adoption in rural Africa. Recent talks stress the necessity of policies that stimulate local and international renewable energy investment. Majid et al. (2022) found that tax benefits, subsidies, and streamlined licensing can minimise renewable energy project entry barriers.

According to Mwampamba et al. (2020), many African legislative frameworks lack the scalability and sustainability requirements for rural energy projects. Regulations that address these issues can help maintain renewable energy growth in these locations.

Challenges and Future Perspectives

Renewable energy in rural Africa has great promise, but it faces significant obstacles. The biggest issue is financing rural initiatives owing to high risks and low returns. Schwerhoff and Sy (2020) suggest microfinancing and international funding to overcome these financial obstacles.

Renewable energy in rural Africa will likely be determined by technical advances, stronger regulatory frameworks, and more community participation. Renewable energy integration into rural development agendas is predicted to accelerate as technologies become more cost-effective and regulations encourage sustainable practices, adding considerably to sustainable development goals.

The Potential of Renewable Energy in Rural Development

Renewable energy has enormous potential for promoting rural development if it is exploited properly and responsibly. The essence of the argument is supplying regular, dependable energy that may serve as the backbone for a variety of developmental activities. Dincer and Acar (2015) emphasise the critical role of sustainable energy in creating jobs, increasing agricultural output, and improving the delivery of key services such as healthcare and education. Similarly, the decentralised nature of renewable energy technology is known for its ability to promote local entrepreneurship and self-sufficiency (Winkler, 2011).

Sovacool et al. (2016), on the other hand, warn that the success of renewable energy projects in rural areas is dependent on the alignment of technology with local socioeconomic conditions and the establishment of supportive institutional frameworks. As a result, while renewable energy provides opportunity, it does not automatically translate into genuine development advantages. Nussbaumer et al. (2013) agree, arguing that the interaction of energy interventions with local dynamics and wider development plans is frequently complex and context-specific.

This necessitates an integrated and holistic strategy for renewable energy deployment for rural development. Renewable energy technologies should be considered integral components of a larger development plan, not only as technical solutions. The emphasis should be on establishing synergies between energy initiatives and other developmental sectors in order to ensure that the advantages of renewable energy reach a larger population and contribute to fair development. The challenge, then, is to tap into renewable energy's

enormous potential while being attentive to local dynamics and supportive of greater development goals.

Socio-economic and Environmental Benefits of Renewable Energy

In contemplating the manifold benefits of renewable energy, one cannot overlook the socio-economic and environmental dimensions. Renewable energy has the ability to spur widespread sustainable development, both directly and through a cascade of beneficial effects. Sustainable development discourse frequently brings up the question of striking a balance between the socio-economic and environmental advantages of renewable energy.

According to Ellabban et al. (2014), renewable energy has the potential to boost regional economies, provide employment, increase energy security, and lessen reliance on fossil fuels. These factors are essential from a socioeconomic standpoint for promoting growth, eradicating poverty, and establishing fairness. Similar to this, Adaramola et al. (2014) emphasise how renewable energy technology may assist in delivering inexpensive, dependable, and sustainable energy services to remote rural communities, hence improving livelihoods and quality of life.

However, the advantages for the environment are just as compelling, if not more so. The negative environmental and health effects of traditional energy sources, such as air pollution and greenhouse gas emissions that cause climate change, can be lessened by the adoption of renewable energy technology (Jacobson & Delucchi, 2011). Additionally, because it is a clean source of energy, renewable energy may support resilience to climate change, the preservation of biodiversity, and the preservation of natural resources (Chu & Majumdar, 2012). In comparing these two viewpoints, the author contends that the socio-economic and environmental advantages of renewable energy are linked rather than mutually incompatible. An efficient use of renewable energy sources can start a positive cycle of socioeconomic advancement and environmental sustainability. Recognising and utilising this synergistic potential is crucial if renewable energy is to become a cornerstone of sustainable rural development.

Barriers to the Adoption of Renewable Energy in Africa

Financial Constraints and Market Challenges

Many rural Africans struggle to embrace renewable energy technology due to financial and market issues. High capital costs for renewable energy infrastructure deployment are a major hurdle. Initial investment in renewable technology, notably solar and wind, is too pricey for rural families and certain community-based efforts, according to Nyong et al. (2020). According to Eke and Zhao (2021), financial institutions in rural Africa are not as familiar with the risks and benefits of renewable technology as they should be in order to fund renewable energy projects.

Small project sizes and rural communities' low purchasing power restrict private investment, compounding these financial challenges. According to Osei and Puppim de Oliveira (2019), rural renewable energy projects lack private sector investment due to a lack of an enabling environment. Recent debate implies that public-private partnerships and community-based finance models might offer initial and continuous funding to address these constraints (Amankwah-Amoah et al., 2021).

Technical and Infrastructure Limitations

Renewable energy implementation in rural Africa is also hindered by technical constraints. Rural communities sometimes lack the infrastructure needed to build and maintain renewable energy installations. Kabakian et al. (2019) note that present power grids cannot integrate renewable energy sources without extensive changes, making grid infrastructure a big technological issue. Due to restricted educational and training programmes, these locations lack the skills to install, operate, and maintain renewable technology (Foster and Heeks, 2019).

Technical restrictions concern not just infrastructure but also technology adaptation to local conditions. According to Mendonça et al. (2022), many Western renewable energy ideas fail in Africa's unique natural circumstances. This disparity emphasises the need for regionally appropriate renewable energy technology, engineering, and technical support.

Regulatory and Policy Barriers

Renewable energy uptake depends on government policy and regulation. Scholars like Wamukonya and Jenkins (2021) suggest that uneven policy frameworks and regulatory uncertainty can significantly limit renewable energy growth. Frequent policy changes or competing interests between government levels might confuse investors and hinder project completion.

There are also few rural energy project-specific policies. Thompson and Smith (2020) found that many African nations lack policies that address rural electricity access issues as such small-scale installation and community ownership. To overcome these challenges, comprehensive and stable regulations that support renewable energy projects from design and installation to operation and maintenance are needed. (Opoku and Puppim de Oliveira, 2022).

Social Acceptance and Cultural Factors

Social and cultural aspects greatly impact renewable energy project adoption and sustainability. Adjei et al. (2021) found that rural people may be sceptical and resistant to renewable energy due to a lack of information and comprehension. Traditional methods and biomass and charcoal energy sources, which are reliable and cheap, continue to dominate (Owusu and Asumadu-Sarkodie, 2020).

Community participation and education about renewable energy's long-term economic and environmental advantages are key to its adoption. Community ownership and trust require effective communication techniques that include local leaders and connect traditional knowledge systems with current renewable technology (Nkemelang et al., 2022).

Policy Innovations and Institutional Collaboration

Need for Policy Innovations

The quest for renewable energy development in Africa necessitates the development and implementation of novel policies. The existing policy frameworks are insufficient to promote the necessary shift to renewable energy. Patt (2015) makes a compelling case that policy innovation is required not just to stimulate renewable energy adoption but also to create new regulatory frameworks that account for the specific

characteristics of these technologies. These features include the intermittent nature of some sources, such as wind and solar, as well as the decentralised structure of renewable energy systems. Similarly, Foxon et al. (2013) emphasise the need for policies that can successfully manage the socio-technical changes required in renewable energy implementation. They recommend that techniques for aiding structural changes in energy systems, increasing public acceptability, and fostering technology innovation be included in policy innovation.

From a different perspective, Lema and Lema (2016) emphasise the relevance of policy innovation in developing countries, claiming that it is critical in defining these countries' growth paths. They suggest that policies must be adapted to these nations' distinct socioeconomic and institutional settings, emphasising the importance of policies that promote local capacity building, technology transfer, and the development of local value chains.

After considering these points of view, policy innovation is a critical component in the development of Africa's energy environment. It is critical to design adaptable, context-specific policies that handle the multiple obstacles and possibilities connected with renewable energy adoption. It paves the door for Africa to harness the potential of renewable energy for long-term rural development.

The Role of Institutional Collaboration in Renewable Energy Adoption

The importance of institutional collaboration in the adoption of renewable energy technology cannot be overstated. This viewpoint is supported by the work of Ison et al. (2015), who emphasise the relevance of systemic methods in driving collaboration across various institutional players. Their claims extend to renewable energy, where they believe that such collaborations are required for knowledge exchange, capacity building, and, ultimately, technological uptake.

According to Sovacool et al. (2017), institutional collaboration at many levels, from the local to the international, is critical for the integration of renewable energy systems. They dive into the importance of standardised standards, regulatory frameworks, and policies, which might be developed through international cooperation. They also propose that collaborative projects might spur investments in renewable energy infrastructure and technologies.

However, Quitzow et al. (2016) take a different approach, emphasising the impact of inter-institutional rivalry rather than

collaboration. They claim that by provoking a race to the top, competitive forces amongst institutions might accelerate innovation and the adoption of renewable energy solutions.

Based on these considerations, the author believes institutional collaboration is critical to the spread of renewable energy technology in Africa. We should not, however, dismiss the possible significance of competition. The goal is to strike a balance that promotes both the exchange of information and experiences and the stimulation of novel ideas for renewable energy adoption in Africa's rural areas.

Case Studies of Effective Renewable Energy Initiatives

There are several examples of successful renewable energy projects in Africa, some of which offer illuminating case studies. Africa's largest solar energy plant, the Noor Ouarzazate Concentrated Solar Power Project in Morocco, serves as an example (Santos-Alamillos et al., 2017). This large-scale initiative is the consequence of creative policy choices, including Morocco's long-term renewable energy objectives and partnerships with global players like the World Bank and the Clean Technology Fund. It is not only the result of technocratic interventions, though.

It is key to point out how political interests impede access to cheap energy. For example, Kenya's Lake Turkana Wind Power project is another example of an arguably successful renewable energy project in East Africa; it currently supplies close to 20% of Kenya's installed electrical capacity (Ondraczek, 2013). In addition to utilising advantageous environmental factors, the project's success is due in large part to supportive national energy policy and large financial contributions from international development organisations. Additionally, the project used a community engagement strategy to ensure local support and reduce socio-political opposition.

Although these examples present a favourable picture, it is important to acknowledge that these programmes are context-specific. The diverse political, social, and economic landscapes of Africa call for a special fusion of technical advancements, stakeholder partnerships, and policy innovations. My analysis of these programmes reveals a common thread: a solid basis for renewable energy projects may be created via an integrative strategy that strikes a balance between regional need and global experience, as well as institutional relationships.

Strategies for Harnessing Renewable Energy for Rural Development

Understanding context-specific dynamics is necessary for the development of renewable energy plans in Africa's rural areas. According to Holling (1978), the effectiveness of interventions frequently depends on matching them to local requirements, resource endowments, and cultural norms. Holling (1978) emphasised the necessity for tactics that connect with local reality. This view is consistent with observations made by Adger et al. (2005), who emphasised the significance of building local adaptive ability for the achievement of sustainable development goals.

The success of the Barefoot College in India, which teaches rural women to become solar engineers, exemplifies this contextual awareness (Deshmukh et al., 2013). Through this programme, gender empowerment and cultural context are included in a renewable energy plan. Some aspects of this model, though set in a very different cultural context, may provide strategies for rural Africa. It is possible to empower local populations and foster ownership of renewable energy efforts, for instance, through cooperating with local communities, leveraging pre-existing social institutions, and co-creating solutions that are acceptable from a cultural and social perspective.

In light of these instances, it is clear that plans for using renewable energy for rural development need to be supported by a thorough knowledge of local dynamics. In my opinion, a comprehensive, transdisciplinary strategy is required that integrates technical expertise with in-depth cultural and socioeconomic knowledge, taking into consideration the distinctiveness of each African environment.

A Transdisciplinary Approach to Energy Security and Rural Development

The need for a multidisciplinary approach to renewable energy development in rural Africa has gained traction in recent years. Transdisciplinarity is defined by Jahn, Bergmann, and Keil (2012) as an expanding research strategy that transcends single discipline borders to deliver holistic solutions to complex social concerns. In rural Africa, the multifarious character of renewable energy policy necessitates the combination of energy policy, rural development studies, environmental science, and economics (Sovacool, 2014).

Furthermore, the World Bank's 'Energy Plus' method in Bangladesh, which combined microfinance, social business, and renewable energy

technologies, exemplifies the transdisciplinary approach (Ortiz et al., 2017). This methodology has reached over two million homes and resulted in a variety of good results, ranging from increased energy access to job development and improved lives.

Transdisciplinarity, with its intrinsic elements of reciprocal learning, knowledge co-production, and knowledge integration, is vitally important in accomplishing the ideal transition to renewable energy in Africa's rural communities. Notably, the author's viewpoint is consistent with that of Sovacool (2014) and Jahn et al. (2012), emphasising the necessity for a comprehensive strategy that considers socioeconomic, cultural, and environmental contexts when developing renewable energy policies and strategies.

Implications for Stakeholders

Policy should attempt to promote renewable energy adoption in Africa's rural areas by taking into account local conditions, socio-cultural norms, and resource endowments. For example, Sebitosi and Pillay (2005) advocate a bottom-up approach to policy creation, allowing local people a role in decision-making. They suggest that this would allow for customised tactics to address distinct community requirements. This attitude is shared by Bhattacharyya (2012), who proposes a similar localised approach to policy and decision-making processes in developing nations to increase rural electricity availability. Clancy et al. (2007), on the other hand, argue that in order for local policies to be more effective, national governments must link them with bigger national and regional strategic goals.

The study emphasises the need for researchers and academics to take a multidisciplinary approach to studying the complicated challenges of rural development and renewable energy. A multidisciplinary approach would give comprehensive answers (Jahn, Bergmann, & Keil, 2012). Furthermore, it promotes a closer evaluation of successful transdisciplinary models in order to derive insights that might be applied to different situations.

The study's conclusions provide a road map for successful renewable energy projects in rural Africa for practitioners and private sector players. In this regard, Bhattacharyya (2012) emphasises the need for practitioners to adopt a community-based approach in which local populations are considered collaborators rather than beneficiaries. Furthermore, to guarantee the sustainability of their programmes, private

sector stakeholders should match their plans with the social and economic backdrop of rural Africa.

As the author, I agree that stakeholders' activities should be consistent with local socio-cultural, economic, and environmental conditions. This would allow for more effective deployment of renewable energy programmes in rural Africa, resulting in significant socioeconomic development.

Conclusion

This article offers a thorough analysis of how renewable energy, rural development, and energy security interact in Africa. It makes the case that expanding the use of renewable energy might spur rural development while boosting energy security. The results emphasise the necessity for policy alignment with local requirements, resource endowments, and cultural norms and highlight the significance of a transdisciplinary approach. The article also emphasises the need for institutional cooperation in ensuring the successful implementation of projects related to renewable energy.

This article's possible effects might be felt in numerous different ways. According to Winkler et al. (2011), switching to renewable energy can have a few other advantages, such as better health due to less indoor air pollution, the development of jobs in rural regions, and improved access to electricity. As a result, this article can help policymakers, stakeholders in the business sector, and practitioners make decisions, thereby influencing initiatives that support renewable energy as a means of fostering rural development.

The techniques for guaranteeing effective implementation of locally specific renewable energy policies can be further explored in future studies. Using the work of Bhattacharyya (2012) and Nussbaumer et al. (2012) as a foundation, academics might investigate the best ways to include community involvement and local knowledge in the creation and implementation of policies. Further research is necessary on the possibilities for creative funding methods for renewable energy projects in rural Africa.

In conclusion, this article has paved the way for more nuanced discussions regarding rural development, renewable energy, and energy security in Africa. The promise of a future powered by renewable energy may hold the key to sustained rural development in Africa. The potential of renewable energy to accelerate rural development while boosting energy security should not be ignored.

References

- Ackermann, T. & Söder, L. (2015). "An overview of sustainable energy financing and business models in developing economies". Renewable and Sustainable Energy Reviews, 52, 1222-1231.
- Adair-Rohani, H., Zukor, K., Bonjour, S., Wilburn, S., Kuesel, A. C., Hebert, R., & Fletcher, E. R. (2013). Limited electricity access in health facilities of sub-Saharan Africa: A systematic review of data on electricity access, sources, and reliability. Global Health: Science and Practice, 1(2), 249-261.
- Adaramola, M. S., Paul, S. S., & Oyedepo, S. O. (2014). Assessment of electricity generation and energy cost of wind energy conversion systems in north-central Nigeria. Energy Conversion and Management, 77, 306-317.
- Adger, W. N., Arnell, N. W., & Tompkins, E. L. (2005). Successful adaptation to climate change across scales. Global Environmental Change, 15(2), 77-86.
- Adjei, P. O. W., et al. (2021). "Cultural dimensions of renewable energy adoption in rural West Africa." Renewable Energy, 171, 293-303.
- Aklin, M., et al. (2021). "Access to electricity and the socio-economic impacts of rural electrification projects: A review of the evidence." Energy Policy, 148, 111914.
- Alstone, P., Gershenson, D., &Kammen, D. M. (2015). Decentralized energy systems for clean electricity access. Nature Climate Change, 5(4), 305-314.
- Amankwah-Amoah, J., et al. (2021). "Steering through the renewable energy drive: The role of policy consistency." Energy Policy, 153, 112247.
- Atkinson, L., Sims, R., & Ma, E. (2020). "Training for renewable energy deployment: Lessons from developing countries". Energy Policy, 148, 111796.
- Bailis, R., Drigo, R., Ghilardi, A., &Masera, O. (2015). The carbon footprint of traditional woodfuels. Nature Climate Change, 5(3), 266-272.
- Baurzhan, S., & Jenkins, G. P. (2021). "Rural electrification and development in Kenya: A case study on the impact of solar microgrids." Renewable Energy, 163, 214-223.
- Bazilian, M., Nussbaumer, P., Rogner, H., Brew-Hammond, A., Foster, V., Pachauri, S., Williams, E., Howells, M., Niyongabo, P., Musaba, L., Gallachoir, B., Radka, M., &Kammen, D. M. (2013). "Improving

- access to modern energy services: Insights from case studies". Energy Policy, 42, 239-248.
- Bhattacharyya, S. (2011). Energy Economics: Concepts, Issues, Markets, and Governance. London: Springer London.
- Bhattacharyya, S. C. (2012). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 16(3), 260-271.
- Bhattacharyya, S.C. (2013). 'Conceptual Framework for Energy Access and Rural Poverty in Developing Countries'. Energy Policy, 59, pp. 217-227. doi: 10.1016/j.enpol.2013.03.036.
- Bridge, G., Bouzarovski, S., Bradshaw, M., & Eyre, N. (2013). Geographies of energy transition: Space, place and the low-carbon economy. Energy Policy, 53, 331-340.
- Choi, B.C.K., Pak, A.W.P., 2006. Multidisciplinarity, interdisciplinarity, and transdisciplinarity in health research, services, education and policy: 2. Promotors, barriers, and strategies of enhancement. Clinical and Investigative Medicine 29, 351–364.
- Chu, S., & Majumdar, A. (2012). Opportunities and challenges for a sustainable energy future. Nature, 488(7411), 294-303.
- Clancy, J., Skutsch, M., & Batchelor, S. (2007). The gender–energy–poverty nexus: Finding the energy to address gender concerns in development. Development in Practice, 17(4-5), 567-577.
- Deshmukh, R., Carvallo, J. P., & Gambhir, A. (2013). Sustainable development of the Indian power sector. Energy Policy, 62, 1133-1147.
- Dincer, I., & Acar, C. (2015). A review on clean energy solutions for better sustainability. International Journal of Energy Research, 39(5), 585-606.
- Diop, M. (2017) 'Energy poverty in Africa: Continuing the search for a precise and coherent concept', *Sustainability*, 9(9), p. 1602. doi: 10.3390/su9091602.
- Eberhard, A., Rosnes, O., Shkaratan, M., & Vennemo, H. (2011). Africa's power infrastructure: Investment, integration, efficiency. World Bank Publications.
- Edenhofer, O. et al. (2018) 'Technical Summary Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty'. Intergovernmental Panel on Climate Change. Available at: https://www.ipcc.ch/sr15/

- Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J. C., Farahani, E., Kadner, S., ... & Seyboth, K. (2020). Summary for policymakers. In Climate Change and Land (pp. 3-32). Springer, Cham.
- Eke, J., & Zhao, S. (2021). "Financial barriers to renewable energy adoption in Sub-Saharan Africa: A review of the literature." Energy Economics, 98, 105209.
- Ellabban, O., Abu-Rub, H., & Blaabjerg, F. (2014). Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39,748-764.
- FAO. (2020). The state of agricultural commodity markets 2020. Rome.
- Foster, C., &Heeks, R. (2019). "Innovation and scaling of ICT for the bottom-of-the-pyramid." Journal of Information Technology, 34(4), 338-354.
- Foster, C., &Heeks, R. (2022). "Local economic development impacts of renewable energy projects: Evidence from rural Africa." Renewable and Sustainable Energy Reviews, 151, 111622.
- Foxon, T. J., Hammond, G. P., & Pearson, P. J. (2013). Towards improved policy and institutional coherence in the promotion of low-carbon transitions. Energy Policy, 52, 665-672.
- Gatzert, N., & Kosub, T. (2016). Risks and risk management of renewable energy projects: The case of onshore and offshore wind parks. Renewable and Sustainable Energy Reviews, 60, 982-998.
- Goldemberg, J. (2000). 'World Energy Assessment: Energy and the Challenge of Sustainability'. United Nations Development Programme. Available at: https://www.undp.org/content/dam/aplaws/publication/en/public ations/environment-energy/www-ee-library/sustainable-energy/world-energy-assessment-energy-and-the-challenge-of-sustainability/World%20Energy%20Assessment-2000.pdf
- Hernandez, R. R., Easter, S. B., Murphy-Mariscal, M. L., Maestre, F. T., Tavassoli, M., Allen, E. B., ... & Allen, M. F. (2014). Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews, 29, 766-779.
- Holling, C. S. (1978). Adaptive environmental assessment and management. Wiley.
- IEA (International Energy Agency). (2019). 'Africa Energy Outlook 2019'. Available at: https://www.iea.org/reports/africa-energy-outlook-2019
- International Energy Agency. (2019) *Africa Energy Outlook 2019*. Available at: https://www.iea.org/reports/africa-energy-outlook-2019.

- IRENA (2021). "Renewable Energy Statistics 2021". International Renewable Energy Agency.
- IRENA (International Renewable Energy Agency). (2018). 'Renewable Energy Statistics 2018'. Available at: https://www.irena.org/publications/2018/Jul/Renewable-Energy-Statistics-2018
- Ison, R., Collins, K., Colvin, J., Jiggins, J., Roggero, P. P., Seddaiu, G., ... &Zanolla, C. (2015). Sustainable catchment managing in a climate changing world: New integrative modalities for connecting policy makers, scientists and other stakeholders. Water Resources Management, 29(15), 5667-5681.
- Jacobson, M. Z., & Delucchi, M. A. (2011). Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy, 39(3), 1154-1169.
- Jahn, T., Bergmann, M., & Keil, F. (2012). Transdisciplinarity: Between mainstreaming and marginalization. Ecological Economics, 79, 1-10.
- Kabakian, V., et al. (2019). "Integrating renewable energy into power systems in conflict-affected areas of Sub-Saharan Africa." Energy for Sustainable Development, 51, 39-48.
- Kammen, D. M., & Sunter, D. A. (2020). "Solar energy innovation and Silicon Valley." The Electricity Journal, 33(2), 106778.
- Kates, R. W. et al. (2001) 'Sustainability science', *Science*, 292(5517), pp. 641–642. doi: 10.1126/science.1059386.
- Kaunda, C. S., Kimambo, C. Z., & Nielsen, T. K. (2012). Potential of small-scale hydro power for electricity generation in Sub-Saharan Africa. International Journal of Energy and Environment, 3, 5-18.
- Kirubi, C., Jacobson, A., Kammen, D. M., & Mills, A. (2009). Community-based electric micro-grids can contribute to rural development: Evidence from Kenya. World Development, 37(7), 1208-1221.
- Kuzemko, C., Lockwood, M., Mitchell, C., &Hoggett, R. (2016). Governing for sustainable energy system change: Politics, contexts and contingency. Energy Research & Social Science, 12, 96-105.
- Leedy, P. D., & Ormrod, J. E. (2015). Practical research: Planning and design (11th ed.). Boston, MA: Pearson.
- Lema, A., & Lema, R. (2016). Technological innovation paths in the context of energy access in emerging countries: A review of the literature. Innovation and Development, 6(1), 123-148.

- Maïzi, N., Assoumou, E., & Mazauric, V. (2013). A prospective approach for power generation in West Africa: Is there a role for renewable energy technologies? Energy Policy, 56, 432-446.
- Majid, M., et al. (2022). "Policy incentives for rural renewable energy projects: An analysis of regulatory frameworks in sub-Saharan Africa." Energy Policy, 159, 112520.
- Mendonça, M., et al. (2022). "Challenges in adapting Western renewable energy technologies in Africa." Sustainable Energy Technologies and Assessments, 49, 101692.
- Meyer, R., van der Zwaan, B., & Härtel, P. (2017). Global scenarios for significant reduction in CO2 emissions from passenger cars. Energy Policy, 104, 167-178.
- Moyo, D., et al. (2022). "The role of microgrid technology in promoting renewable energy in rural Africa." Renewable Energy, 169, 789-798.
- Mwampamba, T. H., et al. (2020). "Policy and regulatory barriers to renewable energy adoption in South Africa." Environmental Science & Policy, 112, 189-199.
- Ndemo, B., &Smallbone, D. (2020). African Entrepreneurship and Small Business Development: Context and Process. Vernon Press.
- Newell, P., & Mulvaney, D. (2013). The political economy of the 'just transition'. The Geographical Journal, 179(2), 132-140.
- Nkemelang, T., et al. (2022). "Engaging rural communities in renewable energy projects in Africa: The role of local knowledge." Energy Policy, 160, 112709.
- Nussbaumer, P., Bazilian, M., & Modi, V. (2012). Measuring Energy Poverty: Focusing on What Matters. Renewable and Sustainable Energy Reviews, 16(1), 231–243.
- Nussbaumer, P., Plappally, A., &Sovacool, B. K. (2013). Energy poverty and poverty alleviation: Review of energy poverty literature and international policy. Energy for Sustainable Development, 16(3), 272-285.
- Nygaard, I. &Dafrallah, T. (2016). "Understanding the market for renewable energy in rural areas of western Africa". Renewable Energy, 83, 471-481.
- Nyong, A., et al. (2020). "Barriers to the rapid deployment of renewable energy technologies in African countries." Energy Strategy Reviews, 32, 100543.
- Oliver, R. (2008) History of Africa. Palgrave Macmillan.
- Ondraczek, J. (2013). The sun rises in the east (of Africa): A comparison of the development and status of solar energy markets in Kenya and Tanzania. Energy Policy, 56, 407-417.

- Ondraczek, J. (2019). "The impact of solar home systems on energy poverty in rural Sub-Saharan Africa." Energy for Sustainable Development, 52, 54-66.
- Ondraczek, J., Komendantova, N., and Patt, A. (2015) 'WACC the dog: The effect of financing costs on the levelized cost of solar PV power', *Renewable Energy*, 75, pp. 888–898. doi: 10.1016/j.renene.2014.10.053.
- Onwuegbuzie, A. J., & Frels, R. (2016). Seven steps to a comprehensive literature review: A multimodal and cultural approach. London, England: Sage.
- Opoku, R., & Puppim de Oliveira, J. A. (2022). "Renewable energy for sustainable rural development: Aligning policy and practice in African countries." Energy Sustainability and Society, 12, 15.
- Ortiz, W., Terrapon-Pfaff, J., Dienst, C., &Gröne, M.-C. (2017). Understanding the sustainable energy transition in low-income households in Bangladesh: A capabilities approach perspective. Energy Policy, 109, 155-166.
- Owusu, P. A., & Asumadu-Sarkodie, S. (2020). "A review of renewable energy sources, sustainability issues and climate change mitigation." Cogent Engineering, 7(1), 1653741.
- Patt, A. (2015). Transforming energy: Solving climate change with technology policy. Cambridge University Press.
- Pickard, A. J. (2012). Research methods in information. Facet.
- Practical Action. (2020) Poor people's energy outlook 2020: Achieving inclusive energy access at scale. Available at: https://practicalaction.org/policy-and-practice/resource/poor-peoples-energy-outlook-2020/
- Quitzow, R., Walz, R., Köhler, G., & Rennings, K. (2016). The concept of "lead markets" revisited: Contribution to environmental innovation theory. Environmental Innovation and Societal Transitions, 22, 67-84.
- Santos-Alamillos, F. J., Pozo-Vázquez, D., Lara-Fanego, V., Ruiz-Arias, J. A., & Tovar-Pescador, J. (2017). Analysis of spatiotemporal balancing effects in solar energy systems with high penetration levels: The case of the Moroccan power system. Applied Energy, 202, 486-497.
- Schure, J., Ingram, V., Sakho-Jimbira, M. S., Levang, P., & Wiersum, K. F. (2017). Formalisation of charcoal value chains and livelihood outcomes in Central and West Africa. Energy for Sustainable Development, 35, 76-86.

- Schwerhoff, G. & Sy, M. (2017). "Financing renewable energy in Africa Key challenge of the sustainable development goals". Renewable and Sustainable Energy Reviews, 75, 393-401.
- Schwerhoff, G., & Sy, M. (2020). "Financing renewable energy in Africa—Key challenge of the sustainable development goals." Renewable and Sustainable Energy Reviews, 123, 109768.
- Schwerhoff, G., Sy, M. (2017). 'Financing renewable energy in Africa Key challenge of the sustainable development goals'. Renewable and Sustainable Energy Reviews, 75, pp. 393–401. doi: 10.1016/j.rser.2016.11.004.
- Sebitosi, A. B., & Pillay, P. (2005). Renewable energy and the environment in South Africa: a way forward. Energy Conversion and Management, 46(11), 1953-1963.
- Sovacool, B. K. (2011). The policy challenges of energy security and climate change mitigation: wrestling with the "green paradox." Journal of Public Policy, 31(2), 135-159.
- Sovacool, B. K. (2013). Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) project. Energy Policy, 62, 803-810.
- Sovacool, B. K. (2014). What are we doing here? Analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Research & Social Science, 1, 1-29.
- Sovacool, B. K., Axsen, J., & Sorrell, S. (2017). Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research & Social Science, 45, 12-42.
- Sovacool, B. K., Martiskainen, M., Hook, A., & Baker, L. (2016). Decarbonization and its discontents: a critical energy justice perspective on four low-carbon transitions. Climatic Change, 139(2), 181-194.
- Thompson, H., & Smith, L. (2020). "Policymaking for renewable energy in rural sub-Saharan Africa: Gaps and challenges." Energy Policy, 138, 111287.
- UNEP (2019). "United Nations Environment Programme Report on Renewable Energy and Jobs Annual Review 2019".
- Van der Vleuten, F., & Stam, N. (2017). Leaving no one behind: energy for humanitarian response and sustainable development. Energy, Sustainability and Society, 7(1), 14.
- Wamukonya, N., & Jenkins, K. E. H. (2021). "Policy inconsistency and the struggle for sustainable energy transitions in Africa." Environmental Science & Policy, 116, 246-253.

- Winchester, N. (2012). The impact of border carbon adjustments under alternative producer responses. Energy Economics, 34, S161-S173.
- Winkler, H. (2011). Aligning climate change and development policy: A case study of South Africa. Climate Policy, 11(3), 1023-1041.
- Winkler, H., Hughes, A., Haw, M., & Merven, B. (2011). South Africa's energy future Visions, driving factors and sustainable development indicators. Energy Policy, 39(12), 7834-7844.
- World Bank (2020). "World Bank Report on Electricity Access in Sub-Saharan Africa".
- World Bank. (2017) *Africa's Pulse, No. 15*. Available at: https://openknowledge.worldbank.org/handle/10986/26369 (accessed 17 March 2024).